NetHint: White-Box Networking for Multi-Tenant Data Centers

Jingrong Chen, Hong Zhang, Wei Zhang, Liang Luo, Jeffrey Chase, Ion Stoica, and Danyang Zhuo
Data-Intensive Applications Are Moving to The Cloud

Data Analytics

Deep Learning

Reinforcement Learning

Apache Spark

TensorFlow

Ray

Hadoop

Horovod

rllib

aws

Microsoft Azure

IBM Cloud
Today’s Cloud Offers a “Black-Box” Abstraction

- Simple
- Tenants have minimum knowledge about the network performance
 - No link-layer topology
 - No instantaneous available bandwidth

Black-Box Abstraction for a tenant
Data-Intensive Applications Can Adapt Traffic
Data-Intensive Applications Have Incentive to Adapt Traffic

Case 1: Schedule with no information

Broadcast finish time
Case 1: $1 / 0.5 = 2$
Data-Intensive Applications Have Incentive to Adapt Traffic

Rack 1

A

C

Rack 2

B

D

Broadcast finish time
Case 1: $1 / 0.5 = 2$
Case 2: $1 / 0.75 = 4/3$

Case 2: Topology-aware schedule
Data-Intensive Applications Have Incentive to Adapt Traffic

Rack 1

A

C

Rack 2

B

D

Broadcast finish time
Case 1: \(\frac{1}{0.5} = 2\)
Case 2: \(\frac{1}{0.75} = \frac{4}{3}\)
Case 3: \(\frac{1}{1} = 1\) (optimal)

Case 3: Schedule with topology + bandwidth
Mismatch!

- Black-Box networking abstraction does not provide network characteristics.

- Data-intensive applications have both the incentive and ability to adapt their transfer schedule based on network characteristics.

Can we address the mismatch without changing the black-box abstraction?
• Black-Box networking abstraction does not provide *network characteristics*

Mismatch!

User Probing
Tenants do traffic probing to profile the network performance

- **Costly:** every app probes for itself
- **Slow:** delay the start

A white-box approach to resolve this mismatch?
Strawman White-Box Solution

Cloud provider exposes some useful information to tenants
NetHint Overview

• An interactive mechanism between a cloud tenant and its provider to jointly enhance the application performance
Questions to Answer

- What hints to provide?
- How to provide hints with low cost?
- How should applications adapt their traffic?
What Is in the Hint?

• Reflect locality of instances
• A hierarchical virtual topology T for a cloud tenant.
What Is in the Hint? – Cont’d

• A virtual topology T for a cloud tenant.
• Network utilization on each link l
 • Total bandwidth B_r on link l
 1. All flows
 2. Residual bandwidth B_r on link l (security)
 3. B_r + Number of competing flows n sharing the same link l (not accurate)
Timely NetHint with Low Cost

- NetHint collects network metrics periodically
- In each period, collect once for all tenants
- Hierarchical all-gather; all-to-all only among racks
- We set the information update period to 100ms
Overhead of NetHint’s Monitoring Plane

- Each CPU core emulates a rack

<table>
<thead>
<tr>
<th># Racks</th>
<th>CPU Util. (%)</th>
<th>Memory (MB)</th>
<th>Latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.06</td>
<td>4.5</td>
<td>10.6</td>
</tr>
<tr>
<td>24</td>
<td>0.14</td>
<td>5.9</td>
<td>10.7</td>
</tr>
<tr>
<td>96</td>
<td>0.41</td>
<td>19.3</td>
<td>11.9</td>
</tr>
<tr>
<td>240</td>
<td>0.66</td>
<td>78</td>
<td>13.7</td>
</tr>
</tbody>
</table>
Adapting Transfer Schedules with NetHint

• Collective communication
 • Data-parallel deep learning
 • Reinforcement learning
 • Serving ensemble models

• Task placement
 • Data-analytics frameworks
 • Task-based distributed systems
Other Questions to Answer

• Applications calculation/adaptation latency?
• Highly dynamic network conditions?
• Bandwidth estimation noises?
• Herd behavior?

Stale Hints?

How do they affect app performance?
Evaluation

• Testbed setup
 • 6 servers, 40G
 • 2 racks, oversubscription: 3
 • Each machine run 4 VMs, 10G

• Baselines:
 • Not using network information
 • User probing
 • N hosts, N/2 rounds.
 • Each round, 10000 packets (Plink) or 1 second (Choreo), whichever is smaller
NetHint on Testbed

(a) Distributed deep learning (b) Ensemble model serving (c) MapReduce
Summary

• Black-box networking abstraction and adaptiveness of data-intensive applications create a mismatch.

• NetHint: an interactive mechanism between cloud provider and tenants to jointly optimize application performance.
 • 2.2x, 1.4x, 1.2x improvement on Deep Learning, Model Serving, and MapReduce
 • NetHint is available at https://github.com/crazyboycjr/nethint

Thank you!
Contact jingrong.chen@duke.edu